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Abstract—SNN models offer notable advantages in terms of
memory efficiency and energy consumption when compared to
traditional artificial neural network models. However, their
unique impulse propagation characteristics often result in lower
prediction accuracy and limited generalization abilities.
Consequently, SNNs are not widely adopted in many application
domains.In light of this current state of affairs, we have
undertaken an investigation into the application of various
dropout techniques, including standard dropout, dropout2d,
Feature dropout, and alpha dropout, which are commonly
employed in traditional artificial neural networks. Our objective
is to assess the impact of these dropout techniques on the training
loss and test accuracy of SNN models.To conduct our
experiments, we have focused on fully connected SNN models
using two benchmark datasets: MNIST and CIFAR-10. Our
findings indicate that SNNs subjected to multiple dropout
techniques exhibit subpar performance in both training loss and
test accuracy evaluations. This suggests that the straightforward
application of dropout and its variants does not yield the desired
improvement in the performance of SNN models.
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I. INTRODUCTION
In the field of neural network modeling, modern artificial

neural networks typically process continuous input values and
produce continuous outputs through fully connected structures.
While these networks have achieved significant breakthroughs
across various domains, they fall short of replicating the
intricate operations observed in biological neurons within the
human brain.

Inspired by the brain's information processing principles,
Spiking Neural Networks (SNNs) have gained attention for
their potential in efficient event-driven computations. Unlike
traditional artificial neural networks, SNNs use discrete
temporal pulses for communication and computation. This
unique approach allows SNN models to be deployed in specific
scenarios, such as embedded devices. SNNs offer distinct
advantages, including reduced memory usage and
computational overhead, critical for minimizing memory
footprint, operational latency, and energy consumption
compared to traditional ANN models. Furthermore, SNNs can
enhance overall computational efficiency by streamlining
processing steps.1

1 We are co-first in this paper.

However, due to their impulse-driven nature and the
scarcity of labeled impulse data, impulse neural networks face
formidable challenges related to overfitting during training.
Consequently, training SNNs to achieve high prediction
accuracy remains a challenging endeavor.

To address these challenges, improve SNN performance,
and emphasize their advantages, we explored the application of
dropout — a common regularization technique in artificial
neural networks— and its variants to SNNs. The goal was to
mitigate overfitting issues and enhance their generalization
capabilities. We conducted an extensive series of experiments
using two publicly available datasets. Unfortunately, our
findings revealed that incorporating these four dropout
techniques did not yield improvements in prediction accuracy
or generalization ability for SNNs. In fact, the results were less
favorable than those of the original SNN model. Subsequent
experiments on neurons with active impulse information
confirmed that the application of dropout techniques disrupted
impulse data, ultimately compromising SNN performance.

Fig. 1. Schematic diagram of dropout and activation methods

In the figure provided above, we can observe the
foundational model of dropout along with an accompanying
flowchart. Figure 2 illustrates the schematic representation of
the activation in the two neural networks.

II. METHODOLOGY

In our study, we have employed various dropout techniques,
including standard dropout, dropout2d, Feature-Dropout, and
Alpha-Dropout, within the context of Spiking Neural Networks
(SNNs). Below, we provide an overview of the foundational
model we utilized in our research.

A. SNN
SNNs convey and process information through the timing of

impulses. Our experimental setup involved a three-layer fully-
connected SNN, which included a hidden layer featuring
weighted delayed synapses between layers. This model is
rooted in a spike response model, where the neurons in the
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hidden layer receive spikes from the preceding layer and emit
spikes when their membrane potential initially crosses the
threshold.
In this particular experiment, the input data for the SNN

were transformed into the first firing time of the input neuron.
This firing time served as an integral component of the input
vector for the hidden layer neuron. The postsynaptic potential
of the kth synaptic connection from input neuron i to hidden
layer neuron h was contingent on the strength of the synaptic
connection. Subsequently, the membrane potential could be
calculated using the following equation:
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Here, the symbol ω denotes the synaptic weight, with each
synapse delayed by a time period of d, and σ represents the
spike response kernel.
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To facilitate the discussion, the equations (1) and (2) can be
expressed in matrix form:

)()( tYWtV HHH  (3)

Here, �� ={�1, ⋯, ��}(where H represents the number of
neurons in the hidden layer), �� denotes the weight matrix
connecting the input layer to the hidden layer, and ��
represents the kernel vector of the spike response in the hidden
layer.[1-4]

B. Standard-dropout
In standard dropout, during the forward propagation process

for each neuron layer, let's consider a neuron with its output
denoted as Y, which is influenced by input X and weight W,
this relationship can be represented as:

)(WxfY  (4)

Here, f represents the activation function. Now,
introducing the dropout probability p during the training
phase, we apply a mask to each neuron in the neuron vector
layer, as follows:

)~()( BernoullimmWxfY i (5)

After adjusting the weights through a loss function, during
the testing phase, all neurons become active, and the network
operates using the weights obtained during training. However,
each neuron is retained with a probability of p1 .
Consequently, the output is predicted as:

)()1( WxfpY  (6)

C. dropout2d
Dropout2d is a regularization technique employed in

convolutional neural networks, setting itself apart from
standard dropout by its application to the output of
convolutional layers. Its primary purpose is to mitigate
overfitting by randomly discarding portions of channels within
the output feature map of a convolutional layer.
During training, the input feature map of a convolutional

layer is denoted as X , comprising multiple channels
represented as kjix ,, . The channel index i and spatial location
indices j and k are associated with the feature map. The
Dropout2d operation is expressed as follows:
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Here, kjiY ,, signifies the output after applying Dropout2d,

kjiX ,, denotes the input, and p represents the dropout
probability. In this equation, if a channel is dropped, all its
values at spatial locations are set to zero. Otherwise, its values
are normalized by division with )1( p .[5]

D. Feature-dropout
Feature-dropout resembles regular dropout but is typically a

variant applied to convolutional neural networks (CNNs) that
operate in the channel dimension. During each training
iteration, Feature-dropout randomly sets specific channels of
the input data to zero with a probability 'p'. This practice can
be considered as feature-level regularization, promoting
network independence from specific feature channels and
thereby enhancing generalization performance.

E. Alpha-dropout
Standard-Dropout typically assigns a probability of p1 to

randomly set the activation g to zero during training. To
maintain the mean, the activation g is divided by p to offset
the portion that was set to zero.
On the other hand, Alpha-dropout is a regularization

method designed for the SeLU activation function, aimed at
keeping the mean and variance constant to support the self-
normalization property of the network. For the
SeLU activation function, the default and low variance value
as x tends to negative infinity is given by:

')(lim   xSeLUx (8)

However, unlike Standard-Dropout, Alpha-dropout randomly
sets the input to ' instead of 0. Through affine
transformations, this ensures that the network ultimately
achieves a zero mean and unit variance.[6-8]
The following are four common neural network

regularization algorithms:



Algorithm : Main algorithm of Dropout on SNN

Input: X represents the input random variable,
Y represents the output random variable,H(x) represents
entropy, and H(X|Y) represents conditional entropy.

# Initialization
Randomly initialize data space X
Randomly initialize data label Y
input = Image(X, Y)

# Define a forward propagator function
for t in range(simulation_time_steps):

weighted_sum=numpy.dot(input, weighteds)+self.biases
spike_train = dropout algorithm # include dropout,
dropout2d,alpha-dropout,feature-dropout;

end for

# Simulate the pulse propagation of neurons
for each input synapse in each neuron

calculate the Membrane potential ��(t) of each neuron
with function ��(t) = ����(t)

if ��(t) > threshold then
neuron.spike = true;
Check if the neuron is firing a pulse
Transmit the pulse to subsequent neurons

end if
end for

Implement back propagation and weight updating

# Result Output
output_result = network_neurons[-1].spike

F. complexity analysis
The time complexity of standard dropout is calculated as

�( �=1
�

�=1
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2�� ) . The space complexity depends on storing
the dropout mask and intermediate results during forward
propagation, both of which are typically constant.
In contrast, dropout2d, Feature-dropout, and Alpha-dropout

all have a time complexity of  WHCNO  , where N
represents the batch size, C represents the number of channels
in the input feature map, H denotes the height of the feature
map, and W denotes the width of the feature map. For
dropout2d, the space complexity is )1(O , while the complexity
of Feature-dropout and Alpha-dropout is  WHCNO  .

III. EXPERIMENT

Based on the SNN model, we conduct experiments using
two benchmark datasets, some of the details of which are as
follows:

A. experimental basis

Dataset Trainning Samples Test samples Input Dimention
Minist 60000 10000 28×28

CIFAR-10 50000 10000 32×32×3

Table1:Statistic Of Image classification Datasets

The MNIST dataset is one of the most commonly used and
straightforward datasets in classification tasks. It comprises
approximately 70,000 images in which the numbers 0-9 have

been artificially handwritten. These images are grayscale maps,
meaning they possess only a single image channel.
On the other hand, the CIFAR-10 dataset is somewhat more

complex compared to MNIST. While MNIST is artificially
generated, CIFAR-10 is a real-world dataset. CIFAR-10
consists of 10 distinct classes, and there are a total of 60,000
color images, each measuring 32x32 pixels.
Our experiments were conducted on a machine equipped

with an NVIDIA Tesla V100 GPU boasting 32GB of RAM.
To ensure the reliability of our results, we conducted each
experiment five times, reporting both the mean performance
and standard deviation. Our evaluation was based on
categorization accuracy and loss performance metrics.

B. Assessment of results
In this experiment, we individually apply dropout, dropout2d,

Feature-dropout, and alpha-dropout to SNNs, and compare the
training loss against test accuracy with the base SNN (i.e., the
SNN without any dropout operation). The results are visualized
in Fig 2 to Fig 5.
From the four figures it can be seen that both the CIFAR

dataset and the MINIST dataset, the training loss of the SNN
model after applying the dropout and dropout2d methods is
greater than that of the SNN base model, and the test accuracy
is less than that of the SNN base model, while the application
of Feature-dropout and alpha-dropout makes the SNN lose its
training and prediction capabilities. In further research, we
sorted the weights of neurons that were not dropout before and
after training to the following results:

Top 1-3 Top 4-10
Without dropout 9 8 3 2 0 1 4 5 6 7
With dropout 112 127 121 122 116 118 113 9 1 5

Table2: Neuron ID Sorting

In Table 2, the numbers represent neuron numbers, and the
higher the weight, the higher the ranking and the greater the
importance. It can be seen that the important neurons with
active pulse information change significantly before and after
dropout. However, according to the existing experience, the
overall importance of neurons should not change significantly
with the same parameter settings, which is the reason why the
neural network model has relative reproducibility. The reason
for this dramatic change is due to the fact that simply applying
dropout to SNNs will cause their impulse information to be
disturbed, which will reduce the training and prediction effect
of the SNN network, or even prevent the impulse neural
network from working properly.[9-14]

C. conclusion

In this paper, we have implemented various dropout
techniques on spiking neural networks (SNNs) and conducted
training and testing on two datasets. After visualizing and
analyzing the results, we have observed that the
straightforward application of dropout and its variations to
SNNs does not mitigate overfitting and does not effectively
enhance their generalization abilities. Instead, it appears to
compromise the performance of the SNN model.



Fig2-3: Based on CIFAR-10 dataset

Fig4-5: Based on MINIST dataset
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