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Abstract

Conformance checking techniques evaluate how well a process model aligns with an actual event log. Existing methods, which rely
on optimal trace alignment, are computationally intensive. To improve efficiency, a model sampling method has been proposed to
construct model behaviour subset that represents the entire model. However, current model sampling techniques often lack sufficient
model representativeness, limiting their potential to achieve optimal approximation accuracy. This paper proposes new model
behaviour sampling approaches using hierarchical clustering to compute an approximation closer to the exact result. This paper also
refines existing upper bound algorithm for better approximation. Our experiments on six real-world event logs demonstrates that our
method improves approximation accuracy compared to state-of-the-art model sampling methods.
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1. INTRODUCTION

Conformance checking is a set of process mining functionali-
ties aimed at identifying deviations between the actual behaviour
of the event log (”as-is”) and the modeled behaviour of the pro-
cess model (”to-be”). It facilitates further applications, such as
model repair, anomaly detection, and algorithm evaluation [1].

In recent years, alignment-based method [2] has become the
de facto standard for conformance checking in computing con-
formance diagnostics, as it always returns the most accurate
deviations, known as optimal-alignment [3]. However, finding
the optimal alignment is an NP-hard problem [4]. As the com-
plexity of the log and model increases, the runtime complexity
of optimal alignment computation grows exponentially, leading
to extremely long computation times—sometimes even taking
several weeks. This makes them impractical for real-world ap-
plications, especially for large-scale event logs. Moreover, in
certain cases, an exact conformance value is not necessary, such
as when conducting a preliminary evaluation of process models
with various process discovery algorithm [5].

To tackle the problems, various approximation strategies have
been proposed, including optimizing the search algorithm [6, 7]
and decomposition schemes [8, 9]. However, sampling provides
another angle for approximate conformance checking, such as
sampling traces to represent event log [10, 11] or selecting model
traces to substitute process model [5, 12]. In this paper, we adopt
the latter approach, focusing on model sampling. Two main
model sampling methods exist: simulation [13] and candidate
selection [5]. We concentrate on candidate selection due to its
higher accuracy [5]. The candidate selection method identifies
representative traces from the event log (i.e. log behaviour sub-
set), and then computes their optimal alignments to determine
the corresponding model traces (i.e., model behaviour subset).
The accuracy of this approximation depends on the quality of
the selected log traces [12]. However, existing log selection

techniques (e.g., random, frequency-based [5], K-Medoids [14])
often lack behavioural diversity and model representativeness
(see Section 2), leading to reduced accuracy in conformance ap-
proximation. Hence, there is significant potential for improving
the quality of model behaviour subsets.

In this paper, we propose an enhanced model behaviour sam-
pling method to select more representative subsets and get more
accuracy approximate values. First, we apply hierarchical clus-
tering to the event log using our proposed distance criterion.
Then, we propose two in-cluster methods to select typical traces
from each cluster, which are then used to construct more repre-
sentative model behaviour subsets. Finally, we extend existing
cost lower bound algorithm to achieve more accurate approxi-
mation results. The experimental results show that our approach
yields more accurate approximations than existing baselines,
though with increased approximation time.

The remainder of this paper is organized as follows: Sec-
tion 2 provides a motivating example to further illustrate the
research problem. Section 3 discusses related work in approxi-
mate conformance checking. Section 4 outlines the necessary
preliminaries. In Section 5, we propose our method for con-
structing model behaviour subsets using hierarchical clustering.
Section 6 details the evaluation and its results. Finally, Section 7
concludes the paper and presents the future work.

2. MOTIVATING EXAMPLE

Research such as [5] and [15] has shown that selecting more
typical log traces lead to higher approximation accuracy. Thus,
the key challenge is determining which subset should be selected
to improve approximate accuracy. Existing log selection meth-
ods, such as the frequency-based and K-medoids approaches,
sometimes lack sufficient log representativeness.



To illustrate the potential limitations of these methods, we use
a synthesized event log L. It contains 5,106 traces consisting of
32,600 events and 12 trace variants, as shown in Table 1.

Table 1: Event Log
ID Trace Variant Freq ID Trace Variant Freq
0 ⟨a, b, c, d, f , e, g, h⟩ 1280 6 ⟨a, d, f , h⟩ 250
1 ⟨a, b, c, d, e, f , g, h⟩ 912 7 ⟨a, f , b, c⟩ 96
2 ⟨a, b, c, d, e, g, f , h⟩ 864 8 ⟨a, c, e, f , g⟩ 64
3 ⟨a, b, c, h⟩ 792 9 ⟨a, d, e, g, h⟩ 56
4 ⟨a, b, c, d, h⟩ 400 10 ⟨a, b, f , e, g, h⟩ 48
5 ⟨a, h⟩ 320 11 ⟨b, f , g⟩ 24

To discover the event log presented in Figure 1, we applied
the Inductive Miner algorithm [16] with infrequent thresholds
of 0.9.

Figure 1: The Process Model discovered by Inductive Miner with infrequent
threshold equals to 0.9.

Assuming we select three variants to represent the event log,
i.e., the behavior subset consists of three variants. Table 2 shows
the behaviour subsets generated by the frequency-based method,
K-Medoids, and our proposed methods (see Section 5 for details).
The frequency-based subsets shows two key limitations:

1. Overestimation of Alignment Cost: Variant 5, ⟨a, h⟩, can
be perfectly replayed in the model with an alignment cost
of 0. But it’s not included in our model behaviour subset,
aligning it would require at least 6 insertions (i.e., cost of
6), resulting in an overestimated approximate cost.

2. Lack of Structural Diversity: The selected model traces
⟨a, b, c, d, f , e, g, h⟩ and ⟨a, b, c, d, e, f , g, h⟩ differ only in
the order of e and f . This means they represent essentially
the similar structural path, potentially overlooking other
important paths in the process model.

Also, the K-Medoids method has drawbacks: it clusters traces
solely based on their control-flow information, i.e., syntactic
difference. For example, the trace ⟨b, f , g⟩ in log behaviour
subset (as shown in Table 2) may have significantly syntactic
differences from other traces but, due to its low frequency (only
24 occurrences), it is still not enough to represent the model
behaviour.

To address the issues, our approach proposed in Section 5
effectively balances frequency and control-flow information.
Table 2 also shows the cost deviation. It refers to the differ-
ence in alignment cost between using model behaviour subset
and optimal-alignment. The values indicate that the model be-
haviours generated by our methods significantly reduce the cost
deviations compared to vanilla methods.

Table 2: behaviour subsets constructed by four methods
Method Subset Result Cost Deviation

Frequency-
based

Log Behaviour
ΣL = {⟨a, b, c, d, f , e, g, h⟩, ⟨a, b, c, d, e, f , g, h⟩,

7806
⟨a, b, c, d, e, g, f , h⟩}

Model Behaviour
ΣM = {⟨a, b, c, d, f , e, g, h⟩, ⟨a, b, c, d, e, f , g, h⟩,

⟨a, b, c, d, e, g, f , h⟩}

K-Medoids
Log Behaviour

ΣL = {⟨a, h⟩, ⟨a, b, c, d, e, g, f , h⟩,

6596
⟨b, f , g⟩}

Model Behaviour
ΣM = {⟨a, h⟩, ⟨a, b, c, d, e, g, f , h⟩,

⟨a, b, e, f , g, h⟩}

In-cluster
frequency

Log Behaviour ΣL = {⟨a, h⟩, ⟨a, b, c, d, f , e, g, h⟩, ⟨a, b, c, h⟩}
4698

Model Behaviour
ΣM = {⟨a, h⟩, ⟨a, b, c, d, f , e, g, h⟩

⟨a, b, c, h⟩}

In-cluster
medoid

Log Behaviour ΣL = {⟨a, d, f , h⟩, ⟨a, b, c, d, f , e, g, h⟩, ⟨a, b, c, h⟩}
4854

Model Behaviour
ΣM = {⟨a, d, h⟩, ⟨a, b, c, d, f , e, g, h⟩

⟨a, b, c, h⟩}

3. RELATED WORK

To cope with the complexity of alignment construction, ap-
proximation techniques have been developed to balance result
quality and computational cost. One approach explores fast
heuristic search algorithms as alternatives to the A* algorithm
[7, 17, 18]. replace the A* algorithm by exploring new fast
heuristic search algorithms. One such method is Taymouri and
Carmona [17], introducing an evolutionary algorithm to enhance
alignment approximations. Another scheme involves decompos-
ing models into smaller, more manageable parts, even though
this may not always result in optimal alignments [19, 20]. A
similar decomposition technique is discussed in [21], though
it is restricted to sound and safe workflow nets. Furthermore,
building automata capable of aligning log and model has been
explored as another technique [22, 23]. This approach provides
good approximations of the optimal alignments in most cases.

Reducing the behaviour size is another strategy for approxi-
mate conformance checking. One sampling approach focuses
on sampling event log. For instance, [24] proposes a trace sam-
pling method, assuming that a few log traces can estimate the
conformance value. However, it lacks upper and lower bounds
for the approximation and performs worse when the event log
contains many unique behaviors.

Another sampling approach targets model behaviour. [5] in-
troduced a model sampling method to construct subsets of model
behaviour that represent the whole process model, significantly
reducing approximation time while largely maintaining accuracy.
The method also provides upper and lower bounds to give some
certainty of the approximation.

Hierarchical clustering is widely used in process mining for
its structural representativeness [25]. Additionally, [26] demon-
strates how hierarchical clustering aids in discovering a better
model.

4. PRELIMINARIES

This section presents conformance checking terminology and
notations to support the subsequent sections. We use the basic
definitions of Petri net, e.g., labeled Petri Net in [27].

Given a system net S N, ϕ f (S N) is the set of all complete
firing sequences of S N and ϕv(S N) is the set of all possible
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visible traces, i.e., complete firing sequences starting in its initial
marking and ending in its final marking projected onto the set of
observable activities (not silent transitions e.g., t3 in Figure 1).

To measure how a trace aligns to a process model, moves are
represented by pairs (a, t), where a is a log activity and t is a
model transition. Legal moves can be: log moves , model moves,
or synchronous moves . Any other combination is an illegal
move.

Definition 1. (Alignment). Let σL ∈ L represent a log trace and
σM ∈ ϕ f (S N) denote a complete firing sequence of a system net
S N. ALM is the set of legal moves. An alignment of σL and σM

is a sequence of pairs γ ∈ A∗LM such that the projection on the
first element (ignoring≫) yields σL and the projection on the
second element (ignoring≫ and transition labels) yields σM .

To quantify the costs of alignments we introduce a cost func-
tion δ in Definition 2.

Definition 2. (Cost of Alignment). Cost function δ ∈ ALM → N
assigns costs to legal moves. The cost of an alignment γ ∈ A∗LM
is the sum of all costs:

δ(γ) =
∑

(a,t)∈γ

δ(a, t).

The cost values assigned to log moves, model moves, and
synchronous moves are 1, 1, and 0, respectively. Note that an
alignment is considered optimal if it has the minimum alignment
cost.

Definition 3. (Optimal Alignment). Let L be an event log and
S N a system net where ϕv(S N) , ∅.

• For σL ∈ L, we define: ΓσL,S N ∈ {γ ∈ A∗LM | ∃σM ∈

ϕ f (S N) is an alignment of σL and σM}.

• An alignment γ ∈ ΓσL,S N is optimal for trace σL ∈ L and
system net S N if for any alignment γ′ ∈ ΓσL,M: δ(γ′) ≥
δ(γ).

• γS N ∈ A∗LM → A∗LM is a mapping that assigns any log trace
σL to an optimal alignment, i.e., γS N(σL) ∈ ΓσL,S N and
γS N(σL) is an optimal alignment.

Definition 4. (Levenshtein Edit Distance). As defined by [28],
the Levenshtein edit distance d(σ1, σ2)→ N represents the min-
imum number of edit operations (i.e., insertions, deletions, and
substitutions) required to transform one sequence into another.
For instance, d(⟨a, b⟩, ⟨c, d⟩) = 2, where the two edit operations
are substitutions (a, c) and (b, d).

Definition 5. (Edit Distance Cost Function). We can calculate
the distance between two traces (or sequences) faster by using
a modified version of the Levenshtein edit distance [29]. Let
σ1, σ2 ∈ A∗ be two sequences of activities. The Edit Distance
Cost Function ∆(σ1, σ2)→ N is defined as the minimum number
of edits (insertion or deletion of activities) required to transform
σ1 into σ2.

Suppose that S is a set of sequences, Φ(σL, S ) =

minσM∈S ∆(σL, σM) returns the distance of the most similar se-
quence in S . Let ϕv(S N) be the set of all visible firing sequences

in S N, and γS N(σ) be an optimal alignment for sequence σ. It
is possible to prove that δS (γS N(σ)) = Φ(σ, ϕv(S N))[12].

In the context of alignment, the edit distance function can
be used as a cost function δS for evaluating the misalignment
between a log trace σL and a model trace σM . This cost
function assigns a value corresponding to the number of op-
erations required to align the two sequences. For example,
∆(⟨a, c, b, e, d⟩, ⟨a, b, c, a, d⟩) = 4 corresponds to two deletions
and two insertions.

Moreover, the alignment cost of a single trace can be con-
verted into a fitness value between 0 (poor fitness, i.e., maximal
costs) and 1 (perfect fitness, i.e., zero costs) using Equation
1 [5]. In this regard, we normalize this cost relative to the
worst case, with one log move for each activity in the trace
and one model move for each transition in the model’s short-
est path, S PM = minσM∈ϕ f (|σM |). Here, the optimal alignment
cost, δ(γS N(σ)), can be replaced by an alternative cost (e.g., edit
distance cost) to obtain a corresponding fitness value.

FitnessTrace(σL, S N) = 1 −
δS (γS N(σ))
|σL| + S PM

(1)

Note that the overall fitness between the event log and the
system net is the weighted average of single trace fitness values.

5. APPROACH

In this section, we present the proposed conformance approx-
imation method. An overview of our approach is shown in
Figure 2. The method begins with a preprocessing stage us-
ing hierarchical clustering techniques. Next, two methods are
proposed for constructing model behaviour subsets: in-cluster
frequency and in-cluster medoid methods. Finally, the alignment
approximation process is explained.

5.1. Preprocess event log using hierarchical clustering

In this stage, we apply agglomerative hierarchical clustering
[30] on event logs. Specifically, we first partition the event
log based on trace variants to get the trace variant subset Σσv .
Then, we introduce normalized weighted Levenshtein distance to
measure the distance between these variants(see Definition 6) as
a new in-cluster distance criterion. This criterion considers both
frequency and control-flow information, alleviating the problem
with current log selection methods mentioned in Section 2. It
is used to build a distance matrix, then forming a dendrogram.
By cutting-off the dendrogram, we obtain the desired number of
clusters. The framework is illustrated in Figure 3.

Definition 6. (Normalized Weighted Levenshtein Distance).
Let A∗ be the set of all possible sequences of activities in A, and
let σv1, σv2 be two trace variants ∈ A∗. The normalized weighted
Levenshtein distance between σv1 and σv2, where each trace
variant has a frequency f (σv1) and f (σv2), is defined as:

dweighted(σv1, σv2) =
f (σv1) · f (σv2) · dN(σv1, σv2)

max{ f (σv1)2, f (σv2)2}
(2)

3



Figure 2: Overview of our approach

Figure 3: Preprocessing workflow for hierarchical clustering

where the normalized Levenshtein distance dN(σv1, σv2) is given
by:

dN(σv1, σv2) =
d(σv1, σv2)

max{|σv1|, |σv2|}
(3)

Here, dN(σv1, σv2) = 0 means the two traces are exactly the
same, and dN(σv1, σv2) = 1 means the two traces are completely
different.

Definition 7. (Distance Matrix). Let σv1, σv2, . . . , σvi ∈ A∗

represent all trace variants in event log L. The matrix D(L) is
defined as, :

D(L) =


0 d(σv1, σv2) · · · d(σv1, σvi)

d(σv2, σv1) 0 · · · d(σv2, σvi)
...

...
. . .

...
d(σvi, σv1) d(σvi, σv2) · · · 0

 (4)

where d is the normalized weighted Levenshtein distance func-
tion.

5.2. Constructing Model Behaviour
In this stage, we first propose two in-cluster methods to get log

behaviour subset ΣL from the generated clusters, and transform
it to model behaviour subset ΣM . Specifically,
a) Candidate selection: After preprocessing, we obtain several
clusters, each representing different behaviours within the model.
The following question is how to choose the typical traces from
each cluster to construct a better log behaviour subset. We extend
the ideas of frequency-based and medoid methods by introducing
two in-cluster methods, i.e., in-cluster frequency and in-cluster
medoid methods, to select trace that represents typical behaviour
in each cluster as our candidate. The in-cluster frequency method
selects the most frequent trace variant from each cluster. The
in-cluster medoid method computes the pairwise Levenshtein
distances between all traces in each cluster, then construct a
distance matrix and obtain the medoid trace (see Definition 8).
Note that the medoid trace is the one with the smallest total
distance to all other traces in the cluster.
b) Optimal-alignment: In this step, we align ΣL with process
model to construct the ΣM , that is, we compute the optimal
alignments of selected traces in the event log and finding the
corresponding model traces for these alignments.

Table 3 shows three clusters generated from the event log
in Table 1. For example, applying the in-cluster frequency
method to cluster 2 yields ⟨a, b, c, h⟩792, the most frequent
trace. Repeating this for each cluster, we obtain ΣL =

{⟨a, b, c, d, f , e, g, h⟩1280, ⟨a, b, c, h⟩792, ⟨a, h⟩320}. We then align
ΣL with the process model as shown in Figure 1, resulting in
ΣM .Note that ΣL and ΣM are same in this example, as all traces
can be fully replayed in the model.

Table 3: The clusters generated from the example log provided in Table 1
Cluster ID Traces in each cluster

1 {⟨a, b, c, d, f , e, g, h⟩1280, ⟨a, b, c, d, e, f , g, h⟩912, ⟨a, b, c, d, e, f , g, h⟩864}

2 {⟨a, b, c, h⟩792, ⟨a, b, c, d, h⟩400, ⟨a, f , b, c⟩96}

3
{⟨a, h⟩320, ⟨a, d, h⟩250, ⟨a, c, e, f , g⟩64,

⟨a, d, e, g, h⟩56, ⟨a, b, f , e, g, h⟩48, ⟨b, f , g⟩24}

The specific algorithm steps for proposed methods are out-
lined in Algorithms 1 and 2.

Definition 8. (In-cluster Medoid). Let L′ be a clustered sublog,
n denote the number of trace variants in L′, and D(L′) be the dis-
tance matrix of L′. The trace σ j = arg minσ j∈L′

∑
i∈[1,n] d(σi, σ j)

represents the medoid trace of sublog L′.

5.3. Computing Alignment Approximation
After constructing MB, we use it to approximate alignments

for the traces in L − LC , where LC refers to the frequency-based
trace variants used to build ΣL. The actual alignment fitness
for the variants in ΣL has already been computed during the
construction of MB, so we can directly use this value for more
accurate approximations. At this stage, we calculate the align-
ment approximations for the remaining variants.

Typically, actual fitness is calculated using standard alignment
costs. However, for the remaining variants, we use the edit
distance cost function ∆ (see Definition 5) to estimate fitness.
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Algorithm 1 In-cluster Medoid Method
Input: Event log L; Process model M.
Output: Model behaviour subset ΣM .

1: Initialize log behaviour subset: ΣL ← ∅

2: Initialize model behaviour subset: ΣM ← ∅

3: Partition L based on variants into Σσv

4: Cluster Σσv into k clusters {Σσv1 ,Σσv2 , . . . ,Σσvk } using hierar-
chical clustering

5: for i = 1 to k do
6: Compute pairwise Levenshtein distances between all

variants in Σσvi

7: Construct distance matrix D(Σσvi )
8: Find the medoid trace σ(i)

L in Σσvi :

σ(i)
L = arg min

σ∈Σσvi

∑
σ′∈Σσvi

d(σ,σ′)

9: Update log behaviour subset: ΣL ← ΣL ∪ {σ
(i)
L }

10: end for
11: for each σ(i)

L ∈ ΣL do
12: Compute optimal alignment γopt

S N between σ(i)
L and M

13: Map to model trace: σ(i)
M ← λS N(σ(i)

L )
14: Update model behaviour subset: ΣM ← ΣM ∪ {σ

(i)
M}

15: end for
16: return ΣM

Algorithm 2 In-cluster Frequency Method
Input: Event log L; Process model M.
Output: Model behaviour subset ΣM .

1: Initialize log behaviour subset: ΣL ← ∅

2: Initialize model behaviour subset: ΣM ← ∅

3: Partition L based on variants into Σσv

4: Cluster Σσv into k clusters {Σσv1 ,Σσv2 , . . . ,Σσvk } using hierar-
chical clustering

5: for i = 1 to k do
6: Let Σσvi denote the i-th cluster of variants
7: Find the most frequent variant σ(i)

L in Σσvi :

σ(i)
L = arg max

σ∈Σσvi

f (σ)

8: Update log behaviour subset: ΣL ← ΣL ∪ {σ
(i)
L }

9: end for
10: for each σ(i)

L ∈ ΣL do
11: Compute optimal alignment γopt

S N between σ(i)
L and M

12: Map to model trace: σ(i)
M ← λS N(σ(i)

L )
13: Update model behaviour subset: ΣM ← ΣM ∪ {σ

(i)
M}

14: end for
15: return ΣM

This method provides guaranteed upper and lower bounds for
the alignment cost, instead of exact values [5] (see Lemma 1 and
Lemma 2 below).

Fitness(L, S N) =
∑
σ∈LC

f (σ) × FitnessApproximate(σ, S N)∑
σ∈L f (σ)

+

∑
σ∈L−LC

f (σ) × FitnessActual(σ, S N)∑
σ∈L f (σ)

(5)

Lemma 1 (Alignment Cost Upper Bound). Let σL ∈ U
∗
A be

a log trace and σM ∈ ϕv(S N) be a visible firing sequence of
S N. We have δS (γS N(σL)) ≤ ∆(σL, σM), where γS N(σL) is the
optimal alignment.

Proof. The proof is provided in Appendix A.1 and demonstrates
how the edit distance guarantees this upper bound.

Simply put, if we align trace variant 4 ⟨a, b, c, d, h⟩ from Table
1 with σL from the in-cluster frequency subset in Table 2, the
alignment cost is 1 (i.e., removing ”d”). However, since σM is
a subset of the full model, the actual cost could be smaller or
equal. Thus, we use 1 as the upper bound for this variant.

Lemma 2 (Alignment Cost Lower Bound). Let S PM =

minσM∈ϕv(S N) |σM | and LPM = maxσM∈ϕv(S N) |σM |, representing
the shortest and longest paths in the process model M. σL⌈Av(S N)
and κ(σL) are as defined in Definition 9.

For any log trace σL, if |σL⌈Av(S N)| < S PM, the alignment
cost lower bound is S PM − |σL⌈Av(S N)| + κ(σL); if |σL⌈Av(S N)| >
LPM, the lower bound is |σL⌈Av(S N)| − LPM + κ(σL); if S PM ≤
|σL⌈Av(S N)| ≤ LPM, the lower bound is κ(σL).

Proof. The proof is provided in Appendix A.2.

The cost lower bound is the minimum edit operations needed
to transform σL into σM . We refine this algorithm using activity
projection (see Definition 9) to improve approximation accuracy.
Existing methods compare log trace length directly with the
model’s range, potentially yielding errors if irrelevant activities
are present. For instance, in Figure 1, a trace ⟨a, x⟩ might seem
aligned if its length falls within the model’s shortest (SPM=2)
and longest paths (LPM=8), even though x is not in the model,
resulting in a miscalculated cost of 0. Our algorithm removes
non-model activities (e.g., removing x from ⟨a, x⟩ to form ⟨a⟩)
before comparing trace lengths. This adjustment yields a more
accurate cost of 1 rather than 0, resulting in a smaller upper
fitness and tighter bound width.

These bounds are then used to compute corresponding upper
and lower fitness bounds (with the cost upper bound giving the
fitness lower bound, and vice versa) using Equation 1. The
computations for the fitness bounds are provided in Algorithm 3
and 4. The average of these bounds provides the approximate
fitness. Once we compute the approximate fitness for each
remaining variant, we take the weighted average of these values
along with the previously computed actual fitness to get the
overall approximate fitness for the entire event log, as shown in
Equation 5.
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Definition 9 (Activity Projection). Let Av(S N) be the set of
unique observable activities in the system net S N. For any
log trace σL, let σL⌈Av(S N) represent the projection of σL onto
Av(S N), meaning the set of activities in σL that also appear in
the model. Define κ(σL) = |σL| − |σL⌈Av(S N)| as the number of
activities in σL that are not present in the model.

For example, let σL = ⟨a, b, x⟩ be a log trace and the observ-
able activities of the system net be Av(S N) = {a, b, c, d, e}. Pro-
jecting σL onto Av(S N) results in σL⌈Av(S N)= ⟨a, b⟩, as x is not
part of Av(S N). Therefore, κ(σL) = |σL|−|σL⌈Av(S N)| = 3−2 = 1,
indicating one activity in σL is not present in the model.

Algorithm 3 Fitness lower bound computation
Input: Event log L; Optimal-aligned Log LC; Model be-
haviour subset ΣM .
Output: Lower bound fitness L f itness(σL,M).

1: for each σL ∈ L − LC do
2: Φ(σL,ΣM) // Compute minimun edit distance cost
3: L f itness(σL,M)← 1 − Φ(σL,ΣM)

|σL |+minσM∈ϕv (S N)(|σM |)
4: end for
5: return L f itness(σL,M)

Algorithm 4 Fitness upper bound computation
Input: Event log L; Optimal-aligned Log LC; Model be-
haviour subset ΣM .
Output: Upper bound fitness U f itness(σL,M).

1: S PM ← minσM∈ϕv(S N) |σM | // Shortest path
2: LPM ← maxσM∈ϕv(S N) |σM | // Longest path
3: for each σL ∈ L − LC do
4: Project σL onto S N: σL⌈Av(S N)
5: Compute κ(σL) = |σL| − |σL⌈Av(S N)|

6: if |σL⌈Av(S N)| < S PM then
7: U f itness(σL,M)← 1 − S PM−|σL⌈Av (S N) |+κ(σL)

|σL |+minσM∈ϕv (S N)(|σM |)
8: else if |σL⌈Av(S N)| > LPM then
9: U f itness(σL,M)← 1 − |σL⌈Av (S N) |−LPM+κ(σL)

|σL |+minσM∈ϕv (S N)(|σM |)
10: else
11: U f itness(σL,M)← 1 − κ(σL)

|σL |+minσM∈ϕv (S N)(|σM |)
12: end if
13: end for
14: return U f itness(σL,M)

6. EVALUATION

In this section, we assess the accuracy and time performance
of our proposed log selection methods compared to frequency-
based and K-Medoids techniques, and evaluate their differences
in accuracy and time against normal alignment. Note that the
comparison between model behaviour sampling and other ap-
proximate methods has been discussed in [5], we focus here on
comparisons with the baselines of model behaviour sampling.
First, we briefly describe the implementation (Section 6.1) and
experimental setup (Section 6.2), followed by a discussion of
the experimental results (Section 6.3).

6.1. Implementation
Our implementation consists of two steps: first, we imple-

mented the algorithms described in Sections 5.1 and 5.2 in
Python, to generate log behaviour subset from event log. Specifi-
cally, we extended the pm4py.algo.clustering package in PM4py
[31] by introducing the normalized weighted Levenshtein dis-
tance (Definition 6), to perform hierarchical clustering. And
implemented two proposed in-cluster methods to get the log
behaviour subset based on the clustering result. In the second
step, we used an existing plugin in ProM [32], Conformance Log
to Log Approximation [33], with the generated model behaviour
subset and the original event log as input, obtaining approximate
fitness bounds and values. For the baselines, we used the imple-
mentation proposed by Fanisani [5]. For the normal alignment,
we used PM4py to compute the time and fitness values. The
source code and experimental results is available on Github 1.

6.2. Experimental Setup
Our experiments were based on six real event logs, with the

basic information about these event logs is given in Table 4.
Here, Uniqueness refers to Variant#

Trace# . A Uniqueness value close to
1 indicates that almost all traces are different, e.g., Sepsis. For
process discovery, we used Inductive Miner infrequent algorithm
[34] with infrequent thresholds of 0.4 to get the process model
. Two log selection methods, frequency-based sampling, K-
Medoids clustering, were used as baselines to compare with
our proposed methods, i.e., In-cluster frequency method and
In-cluster medoid method. Additionally, we set the selection
percentage to 10%, 20%, 30%, 40%, and 50%, representing the
ratio of selected variants to the total number of variants in the
event logs. Our experiment was repeated four times since the
conformance approximation time is non-deterministic. Finally,
we performed the experiments on a computer with Apple M1 (8
cores), 8 GB RAM running macOS.

Table 4: The real-life event logs used in the experiments
Event Log Activities # Traces # Variants # Uniqueness

BPIC2012 [35] 25 13087 4366 0.33
BPIC2013-closed problems [36] 4 1487 183 0.12

BPIC2016-Questions [37] 8 21533 2261 0.10
BPIC2017 [38] 28 31509 15930 0.51

Spesis [39] 18 1050 846 0.81
RTFMP [40] 13 150370 231 0.01

6.2.1. Evaluation Metrics
To measure approximation accuracy, we used Approximate

Error, defined as ApproximateError = |ActualFitness −
ApproximateFitness|, where a value closer to 0 indicates
higher accuracy. Additionally, we assess the Bound Width as
BoundWidth = U f itness − L f itness, with a smaller width
indicating tighter bounds and a more accurate approximation.

We used PI = Actual Conformance Time
Approximate Conformance Time to assess time perfor-

mance. Actual Conformance Time refers to the time needed to

1https://github.com/lvyl9909/Approximate-Conformance-Che

cking-using-Hierarchical-Clustering.git

6

https://github.com/lvyl9909/Approximate-Conformance-Checking-using-Hierarchical-Clustering.git
https://github.com/lvyl9909/Approximate-Conformance-Checking-using-Hierarchical-Clustering.git


Figure 4: The performance differences of different selection strategies on band width and approximate error.

compute normal alignment, while Approximate Conformance
Time includes the total time for approximation. A PI value
greater than 1 indicates the approximation is faster than the
actual conformance computation. Preprocessing time (e.g., hier-
archical clustering) is included in the approximate conformance
time.

6.3. Experimental Result and Discussion

Table 5 shows the actual and approximate fitness values gen-
erated by comparison methods using 20% of the variants in six
event logs, and for each row, we bolded the smallest values.
The results show that the proposed in-cluster methods are more
accurate than the baselines. Our complete experimental data is
provided in Appendix B.

Table 5: Approximate fitness comparison for different selection methods

Event Log Actual Fitness
Approximate Fitness

Frequency K-Medoids In-cluster
frequency

In-cluster
medoid

BPIC2012 0.9995 0.9741 0.9761 0.9788 0.9806
BPIC2013-
closed problems 0.9997 0.9860 0.9711 0.9894 0.9875

BPIC2016-
Questions 0.9997 0.9923 0.9463 0.9944 0.9565

BPIC2017 0.9995 0.9690 0.9700 0.9749 0.9747
Road 0.9999 0.9997 0.9996 0.9998 0.9995
Sepsis 0.9880 0.9202 0.9202 0.9313 0.9319

Figure 4 shows that both Approximate Error and Bound Width
decrease as selection percentages increase. Here, Bound Width is
represented by bars, and Approximate Error by lines, illustrating

the improvements in these metrics as the selection percentage
rises. Our in-cluster methods consistently achieve tighter bounds
at each selection percentage. Notably, at a 50% selection on
the BPIC2017 log, the bound widths of baseline are around
0.05, while our methods reduce this by 40% to 0.03. Addi-
tionally, across all datasets with different selection percentages,
the in-cluster frequency method shows an average improvement
of 19.1% in Approximate Error compared to the frequency-
based method, while the in-cluster medoid method achieves
an average improvement of 27.6% compared to the K-Medoid
method. Moreover, in-cluster frequency method often produces
tighter bounds than in-cluster medoid method, especially on low
Uniqueness logs like BPIC2016-Questions, where selecting the
most frequent trace is more effective than clustering. However,
on high Uniqueness logs like Sepsis, in-cluster medoid method
provides more accurate approximations.

In Figure 5, we compare the time performance of different
log selection methods and their improvement over normal align-
ment. Note that a value of 1 represents the normal alignment
time. Among the comparison methods, the frequency method
usually results in higher performance improvement, followed
by the K-Medoids method. Our methods is less efficient com-
pared to them. Since our methods are based on hierarchical
clustering, it requires step-by-step merging and calculating all
possible cluster combinations, so we need more preprocessing
time compared to baselines, which leads to the approximate
time is higher, especially on large datasets such as BPIC2013-
incidents and BPIC2017. However, even with this increase, our
method remains significantly faster than the normal alignment
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Figure 5: The performance improvement using different methods in six event logs

approach.
Considering both Figure 4 and Figure 5, we observe a trade-

off between performance and accuracy in the proposed methods.
That is, we provide more accurate bounds but need more prepro-
cessing time to approximate the fitness.

7. CONCLUSION

In this paper, we propose an enhanced model behaviour sam-
pling method using hierarchical clustering to construct more
representative model behaviour subsets. By incorporating both
frequency and control-flow information from the event log, our
approach more effectively captures the model’s behaviour, lead-
ing to improved approximation accuracy. Experimental results
show that our method produces approximations that are on av-
erage over 19.1% closer to the actual alignment values than
baseline methods, though it requires more computation time.

In future work, we plan to apply a time-optimized hierarchical
clustering algorithm to reduce the approximation time of our
method. Additionally, an incremental approximation tool could
be developed to increase the size of model behaviour during
the time, allowing the user decide when the accuracy is enough.
Furthermore, exploring how to make use of the distribution
information (e.g., Uniqueness) in the event log to choose better
approximate method is also a direction for future research.
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Appendix A. Proof of Lemmas

Appendix A.1. Proof of Alignment Cost Upper Bound

Proof. We have shown that minσM∈S ∆(σL, σM) = δS (γS N(σL))
in Definition 5, so ∆(σL, σM) ≥ δS (γS N(σL)). Therefore, if
δS (γS N(σL)) > ∆(σL, σM), γS N(σL) is not an optimal alignment.
Consequently, for any MB ⊆ ϕv(S N), Φ(σL,MB) returns an
upper bound for the cost of optimal alignment [5].

Appendix A.2. Proof of Alignment Cost Lower Bound

Proof. When |σL⌈Av(S N)| < S PM, at least S PM − |σL⌈Av(S N)|

insertions are needed. Adding the initial alignment cost, the
total minimum alignment cost is |S PM − σL⌈Av(S N)| + |κ(σL)|.
Similarly, when |σL⌈Av(S N)| > LPM, at least |σL⌈Av(S N)| − LPM
deletions are required. Thus, the total alignment cost is
|σL⌈Av(S N)−LPM| + |κ(σL)|. When S PM ≤ |σL⌈Av(S N)| ≤ LPM,
no insertions or deletions are needed, so the alignment cost is
|κ(σL)|.

Appendix B. Original Experimental Data
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Table B.6: Experimental results for datasets.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2012 0.9995 35400000

10%

Approximate
fitness

Lower
Bound 0.9167 0.9371 0.9368 0.9416

Approximate
fitness 0.9583 0.9685 0.9684 0.9708

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0412 0.0310 0.0311 0.0287

Band
Width 0.0833 0.0629 0.0632 0.0584

Preprocessing
Time (ms) / / 1219923 1259201

Approximate
Time (ms) 411778 439928 25030 26102

Total Approximate
Time (ms) 411778 439928 1244953 1285303

PI 85.9687 80.4677 28.4348 27.5421

20%

Approximate
fitness

Lower
Bound 0.9482 0.9522 0.9576 0.9612

Approximate
fitness 0.9741 0.9761 0.9788 0.9806

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0254 0.0234 0.0207 0.0189

Band
Width 0.0518 0.0478 0.0424 0.0388

Preprocessing
Time (ms) / / 1342972 1392321

Approximate
Time (ms) 572356 859792 39232 32323

Total Approximate
Time (ms) 572356 859792 1382204 1424644

PI 61.8496 41.1727 25.6113 24.8483

30%

Approximate
fitness

Lower
Bound 0.9618 0.9629 0.9688 0.9702

Approximate
fitness 0.9809 0.9814 0.9844 0.9851

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0186 0.0181 0.0151 0.0144

Band
Width 0.0382 0.0371 0.0312 0.0298

Preprocessing
Time (ms) / / 1423219 1529312

Approximate
Time (ms) 702244 1186892 41992 42223

Total Approximate
Time (ms) 702244 1186892 1465211 1571535

PI 50.4098 29.8258 24.1603 22.5257

40%

Approximate
fitness

Lower
Bound 0.9681 0.9690 0.9756 0.9730

Approximate
fitness 0.9841 0.9845 0.9878 0.9865

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0155 0.0150 0.0117 0.0130

Band
Width 0.0319 0.0310 0.0244 0.0270

Preprocessing
Time (ms) / / 1591211 1730030

Approximate
Time (ms) 1229401 1480757 41503 49020

Total Approximate
Time (ms) 1229401 1480757 1632714 1779050

PI 28.7945 23.9067 21.6817 19.8983

50%

Approximate
fitness

Lower
Bound 0.9745 0.9752 0.9802 0.9888

Approximate
fitness 0.9873 0.9876 0.9901 0.9944

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0123 0.0119 0.0094 0.0051

Band
Width 0.0255 0.0248 0.0198 0.0112

Preprocessing
Time (ms) / / 1823900 2102097

Approximate
Time (ms) 1863573 1971131 42826 43503

Total Approximate
Time (ms) 1863573 1971131 1866726 2145600

PI 18.9958 17.9592 18.9637 16.4989
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Table B.6: Experimental results for datasets.

Table ?? continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2013-incident 0.9997 135400

10%

Approximate
fitness

Lower
Bound 0.9559 0.9025 0.9610 0.9560

Approximate
fitness 0.9780 0.9513 0.9805 0.9780

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0218 0.0485 0.0192 0.0217

Band
Width 0.0441 0.0975 0.0390 0.0440

Preprocessing
Time (ms) / / 69233 70923

Approximate
Time (ms) 4200 19572 2033 2992

Total Approximate
Time (ms) 4200 19572 71266 73915

PI 32.2381 6.9180 1.8999 1.8318

20%

Approximate
fitness

Lower
Bound 0.9719 0.9422 0.9788 0.9750

Approximate
fitness 0.9860 0.9711 0.9894 0.9875

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0138 0.0286 0.0103 0.0122

Band
Width 0.0281 0.0578 0.0212 0.0250

Preprocessing
Time (ms) / / 78012 79232

Approximate
Time (ms) 11426 23054 2932 3111

Total Approximate
Time (ms) 11426 23054 80944 82343

PI 11.8502 5.8732 1.6728 1.6443

30%

Approximate
fitness

Lower
Bound 0.9795 0.9554 0.9860 0.9810

Approximate
fitness 0.9898 0.9777 0.9930 0.9905

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0100 0.0220 0.0067 0.0092

Band
Width 0.0205 0.0446 0.0140 0.0190

Preprocessing
Time (ms) / / 81203 85003

Approximate
Time (ms) 17294 27553 3504 4092

Total Approximate
Time (ms) 17294 27553 84707 89095

PI 7.8293 4.9142 1.5985 1.5197

40%

Approximate
fitness

Lower
Bound 0.9839 0.9612 0.9902 0.9850

Approximate
fitness 0.9920 0.9806 0.9951 0.9925

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0078 0.0191 0.0046 0.0072

Band
Width 0.0161 0.0388 0.0098 0.0150

Preprocessing
Time (ms) / / 89129 91892

Approximate
Time (ms) 27133 32868 3932 3902

Total Approximate
Time (ms) 27133 32868 93061 95794

PI 4.9902 4.1195 1.4550 1.4134

50%

Approximate
fitness

Lower
Bound 0.9875 0.9825 0.9920 0.9879

Approximate
fitness 0.9938 0.9913 0.9960 0.9940

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0060 0.0085 0.0037 0.0058

Band
Width 0.0125 0.0175 0.0080 0.0121

Preprocessing
Time (ms) / / 95002 104023

Approximate
Time (ms) 34006 41028 4002 4350

Total Approximate
Time (ms) 34006 41028 99004 108373

PI 3.9817 3.3002 1.3676 1.2494
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Table B.6: Experimental results for datasets.

Table ?? continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2016-Questions 0.9997 5200690

10%

Approximate
fitness

Lower
Bound 0.9679 0.8867 0.9680 0.8911

Approximate
fitness 0.9840 0.9434 0.9840 0.9455

Upper
Bound 1.0000 1.0000 0.9999 0.9999

Approximation
Error 0.0158 0.0564 0.0158 0.0542

Band
Width 0.0321 0.1133 0.0319 0.1088

Preprocessing
Time(ms) / / 359923 389454

Approximate
Time(ms) 47607 61807 2715 1551

Total Approximate
Time(ms) 47607 61807 362638 391005

PI 109.2421 84.1440 14.3413 13.3008

20%

Approximate
fitness

Lower
Bound 0.9845 0.8925 0.9888 0.9130

Approximate
fitness 0.9923 0.9463 0.9944 0.9565

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0074 0.0535 0.0053 0.0432

Band
Width 0.0155 0.1075 0.0112 0.0870

Preprocessing
Time(ms) / / 390239 421292

Approximate
Time(ms) 114727 170665 3832 4902

Total Approximate
Time(ms) 114727 170665 394071 426194

PI 45.3310 30.4731 13.1973 12.2026

30%

Approximate
fitness

Lower
Bound 0.9874 0.9087 0.9920 0.9309

Approximate
fitness 0.9937 0.9544 0.9960 0.9655

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0060 0.0454 0.0037 0.0343

Band
Width 0.0126 0.0913 0.0080 0.0691

Preprocessing
Time(ms) / / 448922 489322

Approximate
Time(ms) 176359 266266 6020 6334

Total Approximate
Time(ms) 176359 266266 454942 495656

PI 29.4892 19.5319 11.4315 10.4925

40%

Approximate
fitness

Lower
Bound 0.9896 0.9114 0.9940 0.9440

Approximate
fitness 0.9948 0.9557 0.9970 0.9720

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0049 0.0440 0.0027 0.0277

Band
Width 0.0104 0.0886 0.0060 0.0560

Preprocessing
Time(ms) / / 483200 530239

Approximate
Time(ms) 280456 325313 9910 10355

Total Approximate
Time(ms) 280456 325313 493110 540594

PI 18.5437 15.9867 10.5467 9.6203

50%

Approximate
fitness

Lower
Bound 0.9913 0.9294 0.9960 0.9503

Approximate
fitness 0.9957 0.9647 0.9980 0.9752

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0060 0.0085 0.0037 0.0058

Band
Width 0.0125 0.0175 0.0080 0.0121

Preprocessing
Time(ms) / / 566660 602030

Approximate
Time(ms) 395799 445163 15330 14340

Total Approximate
Time(ms) 395799 445163 581990 616370

PI 13.1397 11.6827 8.9360 8.4376
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Table B.6: Experimental results for datasets.

Table ?? continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2017 0.9995 180829300

10%

Approximate
fitness

Lower
Bound 0.9332 0.9381 0.9454 0.9450

Approximate
fitness 0.9666 0.9691 0.9726 0.9725

Upper
Bound 1.0000 1.0000 0.9997 1.0000

Approximation
Error 0.0329 0.0305 0.0270 0.0270

Band
Width 0.0668 0.0619 0.0543 0.0550

Preprocessing
Time (ms) / / 86490212 87983292

Approximate
Time (ms) 4049416 4399280 400366 509232

Total Approximate
Time (ms) 4049416 4399280 86890578 88492524

PI 44.6556 41.1043 2.0811 2.0434

20%

Approximate
fitness

Lower
Bound 0.9380 0.9399 0.9497 0.9493

Approximate
fitness 0.9690 0.9700 0.9749 0.9747

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0305 0.0296 0.0247 0.0249

Band
Width 0.0620 0.0601 0.0503 0.0507

Preprocessing
Time(ms) / / 91423432 95431122

Approximate
Time(ms) 15255832 18597920 424210 561543

Total Approximate
Time(ms) 15255832 18597920 91847642 95992665

PI 11.8531 9.7231 1.9688 1.8838

30%

Approximate
fitness

Lower
Bound 0.9431 0.9420 0.9510 0.9512

Approximate
fitness 0.9715 0.9710 0.9755 0.9756

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0280 0.0285 0.0240 0.0239

Band
Width 0.0569 0.0580 0.0490 0.0488

Preprocessing
Time(ms) / / 95294232 99874342

Approximate
Time(ms) 13089388 16606568 502321 424931

Total Approximate
Time(ms) 13089388 16606568 95796553 100299273

PI 13.8150 10.8890 1.8876 1.8029

40%

Approximate
fitness

Lower
Bound 0.9481 0.9480 0.9575 0.9564

Approximate
fitness 0.9741 0.9740 0.9788 0.9782

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0255 0.0255 0.0208 0.0213

Band
Width 0.0519 0.0520 0.0425 0.0436

Preprocessing
Time(ms) / / 99034313 100293122

Approximate
Time(ms) 16294010 18807577 582312 510124

Total Approximate
Time(ms) 16294010 18807577 99616625 100803246

PI 11.0979 9.6147 1.8153 1.7939

50%

Approximate
fitness

Lower
Bound 0.9528 0.9527 0.9682 0.9691

Approximate
fitness 0.9764 0.9764 0.9841 0.9846

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0231 0.0232 0.0154 0.0150

Band
Width 0.0472 0.0473 0.0318 0.0309

Preprocessing
Time(ms) / / 108224313 119901232

Approximate
Time(ms) 20183838 22539508 391222 454002

Total Approximate
Time(ms) 20183838 22539508 108615535 120355234

PI 8.9591 8.0228 1.6649 1.5025
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Table B.6: Experimental results for datasets.

Table ?? continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

RTFMP 0.9999 130430

10%

Approximate
fitness

Lower
Bound 0.9987 0.9975 0.9989 0.9980

Approximate
fitness 0.9994 0.9988 0.9993 0.9990

Upper
Bound 1.0000 1.0000 0.9997 1.0000

Approximation
Error 0.0006 0.0011 0.0006 0.0009

Band
Width 0.0013 0.0025 0.0008 0.0020

Preprocessing
Time(ms) / / 10585 11021

Approximate
Time(ms) 8986 15555 2901 3531

Total Approximate
Time(ms) 8986 15555 13486 14552

PI 14.5148 8.3851 9.6715 8.9630

20%

Approximate
fitness

Lower
Bound 0.9994 0.9991 0.9994 0.9990

Approximate
fitness 0.9997 0.9996 0.9997 0.9995

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0002 0.0004 0.0002 0.0004

Band
Width 0.0006 0.0009 0.0006 0.0010

Preprocessing
Time(ms) / / 14012 15432

Approximate
Time(ms) 8296 11123 3221 3834

Total Approximate
Time(ms) 8296 11123 17233 19266

PI 15.7220 11.7262 7.5686 6.7700

30%

Approximate
fitness

Lower
Bound 0.9994 0.9992 0.9994 0.9994

Approximate
fitness 0.9997 0.9996 0.9997 0.9997

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0002 0.0003 0.0002 0.0002

Band
Width 0.0006 0.0008 0.0006 0.0006

Preprocessing
Time(ms) / / 15236 22293

Approximate
Time(ms) 9831 10222 3232 3923

Total Approximate
Time(ms) 9831 10222 18468 26216

PI 13.2672 12.7597 7.0625 4.9752

40%

Approximate
fitness

Lower
Bound 0.9996 0.9993 0.9998 0.9996

Approximate
fitness 0.9998 0.9997 0.9999 0.9998

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0001 0.0003 0.0000 0.0001

Band
Width 0.0004 0.0007 0.0002 0.0004

Preprocessing
Time(ms) / / 17222 24422

Approximate
Time(ms) 10323 13123 4442 4232

Total Approximate
Time(ms) 10323 13123 21664 28654

PI 12.6349 9.9390 6.0206 4.5519

50%

Approximate
fitness

Lower
Bound 0.9998 0.9996 0.9998 0.9997

Approximate
fitness 0.9999 0.9998 0.9999 0.9999

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0000 0.0001 0.0000 0.0000

Band
Width 0.0002 0.0004 0.0002 0.0003

Preprocessing
Time(ms) / / 19203 30020

Approximate
Time(ms) 9050 10212 4301 5021

Total Approximate
Time(ms) 9050 10212 23504 35041

PI 14.4122 12.7722 5.5493 3.7222
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Table B.6: Experimental results for datasets.

Table ?? continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

Sepsis 0.9880 3035200

10%

Approximate
fitness

Lower
Bound 0.7959 0.7965 0.8204 0.8100

Approximate
fitness 0.8980 0.8983 0.9101 0.9050

Upper
Bound 1.0000 1.0000 0.9997 1.0000

Approximation
Error 0.0901 0.0898 0.0780 0.0830

Band
Width 0.2041 0.2035 0.1793 0.1900

Preprocessing
Time(ms) / / 107478 110312

Approximate
Time(ms) 32599 28302 1902 2032

Total Approximate
Time(ms) 32599 28302 109380 112344

PI 93.1072 107.2433 27.7491 27.0170

20%

Approximate
fitness

Lower
Bound 0.8403 0.8404 0.8626 0.8638

Approximate
fitness 0.9202 0.9202 0.9313 0.9319

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0679 0.0678 0.0567 0.0561

Band
Width 0.1597 0.1596 0.1374 0.1362

Preprocessing
Time(ms) / / 130101 148903

Approximate
Time(ms) 56803 67461 2303 2289

Total Approximate
Time(ms) 56803 67461 132404 151192

PI 53.4338 44.9919 22.9238 20.0751

30%

Approximate
fitness

Lower
Bound 0.8701 0.8405 0.8730 0.8748

Approximate
fitness 0.9351 0.9203 0.9365 0.9374

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0530 0.0678 0.0515 0.0506

Band
Width 0.1299 0.1595 0.1270 0.1252

Preprocessing
Time(ms) / / 159232 162820

Approximate
Time(ms) 79763 60393 5201 5433

Total Approximate
Time(ms) 79763 60393 164433 168253

PI 38.0527 50.2575 18.4586 18.0395

40%

Approximate
fitness

Lower
Bound 0.8931 0.8959 0.9066 0.9015

Approximate
fitness 0.9466 0.9480 0.9533 0.9508

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0415 0.0400 0.0347 0.0373

Band
Width 0.1069 0.1041 0.0934 0.0985

Preprocessing
Time(ms) / / 182782 209212

Approximate
Time(ms) 102649 116824 6123 5736

Total Approximate
Time(ms) 102649 116824 188905 214948

PI 29.5687 25.9810 16.0673 14.1206

50%

Approximate
fitness

Lower
Bound 0.9112 0.9113 0.9255 0.9192

Approximate
fitness 0.9556 0.9557 0.9628 0.9596

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0324 0.0324 0.0253 0.0284

Band
Width 0.0888 0.0887 0.0745 0.0808

Preprocessing
Time(ms) / / 209823 222011

Approximate
Time(ms) 126803 137461 3508 3769

Total Approximate
Time(ms) 126803 137461 213331 225780

PI 23.9363 22.0804 14.2277 13.4432
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